Чем плохо организованная система отличается от самоорганизующейся. Классификация информации. Формализованные способы описания систем

22.05.2022

Степень организованности системы

Организованность или упорядоченность организованности системы R оценивается по формуле

R=1-Э реал/ Э макс, (2.3)

где Эреал - реальное или текущее значение энтропии,

Эмакс - максимально возможная энтропия или неопределенность по структуре и функциям системы.

Если система полностью детерминированная и организованная то Э реал = 0 и R = 1. Снижение энтропии системы до нулевого значения означает полную «заорганизованность» системы и приводит к вырождению системы. Если система полностью дезорганизованная, то R=0 и Э реал =Э макс.

Качественная классификация систем по степени организованности была предложена В. В. Налимовым, который выделил класс хорошо организованных и класс плохо организованных, или диффузных систем. Позднее к этим классам был добавлен еще класс самоорганизующихся систем. Важно подчеркнуть, что наименование класса системы не является ее оценкой. В первую очередь, это можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться и зависимости от стадии познания объекта и возможности получения информации о нем.

Хорошо организованные системы

Если исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы и вид детерминированных (аналитических или графических) зависимостей, то возможно представление объекта в виде хорошо организованной системы. То есть представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения (доказана адекватность модели реальному объекту).

Такое представление успешно применяется при моделировании технических и технологических систем. Хотя, строго говоря, даже простейшие математические соотношения, отображающие реальные ситуации, также не являются абсолютно адекватными, поскольку, например, при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а вес можно измерить только с некоторой точностью. Трудности возникают при работе со сложными объектами (биологическими, экономическими, социальными и др.). Без существенного упрощения их нельзя представить в виде хорошо организованных систем. Поэтому для отображения сложного объекта в виде хорошо организованной системы приходится выделять только факторы, существенные для конкретной цели исследования. Попытки применить модели хорошо организованных систем для представления сложных объектов практически часто нереализуемы, так как, в частности, не удается поставить эксперимент, доказывающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, рассмотренными ниже.

Плохо организованные (или диффузные) системы

Если не ставится задача определить все учитываемые компоненты и их связи с целями системы, то объект представляется в виде плохо организованной (или диффузной) системы. Для описания свойств таких систем можно рассматривать два подхода: выборочный и макропараметрический.

При выборочном подходе закономерности в системе выявляются на основе исследования не всего объекта или класса явлений, а путем изучения достаточно представительной (репрезентативной) выборки компонентов, характеризующих исследуемый объект или процесс. Выборка определяется с помощью некоторых правил. Полученные на основе такого исследования характеристики или закономерности распространяют на поведение системы в целом.

Пример . Если нас интересует средняя цена на хлеб в каком-либо городе, то можно было бы последовательно объехать или обзвонить все торговые точки города, что потребовало бы много времени и средств. А можно пойти другим путем: собрать информацию в небольшой (но репрезентативной) группе торговых точек, вычислить среднюю цену и обобщить ее на весь город.

При этом нельзя забывать, что полученные статистические закономерности справедливы для всей системы с какой-то вероятностью, которая оценивается с помощью специальных приемов, изучаемых математической статистикой.

При макропараметрическом подходе свойства системы оценивают с помощью некоторых интегральных характеристик (макропараметров).

Примеры :

1. При использовании газа для прикладных целей его свойства не определяют путем точного описания поведения каждой молекулы, а характеризуют макропараметрами - давлением, температурой и т.д. Основываясь на этих параметрах, разрабатывают приборы и устройства, использующие свойства газа, не исследуя при этом поведение каждой молекулы.

2. ООН при оценке уровня качества системы здравоохранения государства применяет в качестве одной из интегральных характеристик количество детей, умерших до пяти лет, на тысячу новорожденных.

Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных, цехах предприятия и в обслуживающих учреждениях, при исследовании документальных потоков информации и т.д.

Самоорганизующиеся системы

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием в системе активных элементов, делающих систему целенаправленной. Отсюда вытекают особенности экономических систем, как самоорганизующихся систем, по сравнению с функционированием технических систем:

· нестационарность (изменчивость) отдельных параметров системы и стохастичность ее поведения;

· уникальность и непредсказуемость поведения системы в конкретных условиях. Благодаря наличию активных элементов системы появляется как бы "свобода воли", но в то же время возможности ее ограничены имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями;

· способность изменять свою структуру и формировать варианты поведения, сохраняя целостность и основные свойства (в технических и технологических системах изменение структуры, как правило, приводит к нарушению функционирования системы или даже к прекращению существования как таковой);

· способность противостоять энтропийным (разрушающим систему) тенденциям. В системах c активными элементами не выполняется закономерность возрастания энтропии и даже наблюдаются негэнтропийные тенденции, т. е. собственно самоорганизация;

· способность адаптироваться, к изменяющимся условиям. Это хорошо по отношению к возмущающим воздействиям и помехам, но плохо, когда адаптивность проявляется и к управляющим воздействиям, затрудняя управление системой;

· способность и стремление к целеобразованию;

· принципиальная неравновесность.

Легко видеть, что хотя часть этих особенностей характерна и для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), однако в большинстве своем они являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать требуемую степень их проявления.

При этом следует иметь в виду важное отличие открытых развивающихся систем с активными элементами от закрытых. Пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что, начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью. По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

По этому поводу фон Нейманом была высказана следующая гипотеза: «У нас нет полной уверенности в том, что в области сложных задач реальный объект не может являться простейшим описанием самого себя, т. е. что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому...» .

Необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом: накапливая информацию об объекте, фиксируя при этом все новые компоненты и связи и применяя их можно получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовательно (по мере её формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем – способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются полностью лишенными этой способности, изолированными от среды.

Участники «общества по разработке ОТС» А. Холл и I". Фейджин на основании собственного определения системы приводят такую классификацию систем: Если изменение в каждой отдельной части системы вызывает изменение всех других частей и в целой системе, то в этом случае система является целостной . Если изменение каждой части системы не вызывает изменение других частей, то система называется суммативной . Совершенно ясно, что благодаря такому разделению Холл и Фейджин получают возможность охватывать в своей теории значительно больший круг систем, чем Берталанфи.

Несмотря на то, что классификация систем Холла и Фейджина более детальна, чем классификация Берталанфи, а их определение системы более широко по сравнению с определением системой Берталанфи, тем не менее, эти модификации не вносят принципиальных изменений в существо «общей теории систем». И у Берталанфи, и у Холла - Фейджина речь идет о построении определенного математического аппарата, способного дать описание «поведения» достаточно обширного класса системных предметов.

Другие признаки

По однородности или разнообразию структурных элементов системы бываютгомогенные илиоднородные и гетерогенные илиразнородные , а такжесмешанного типа. В гомогенных системах, например, в газах, жидкостях или в популяции организмов, структурные элементы системы однородны и поэтому взаимозаменяемы. Гетерогенные же системы состоят из разнородных элементов, не обладающих свойством взаимозаменяемости.

По равновесию системы делятся наравновесные илиуравновешенные и неравновесные илинеуравновешенные. В равновесных системах, если идут изменения одновременно в двух противоположных направлениях (противоположные процессы), то они взаимно компенсируются или нейтрализуются на некотором уровне. Каждое из возникающих изменений уравновешивается другим, ему противоположным, и система сохраняется в равновесном состоянии. Примером равновесных систем является организм, общество, экосистема и др. В неуравновешенных системах, наоборот, если идут изменения одновременно в двух противоположных направлениях, то одно из нихпреобладает, система преобразуется в эту сторону и равновесие нарушается. Однако это нарушение равновесия иногда может совершаться столь медленно, что система производит впечатление равновесной (ложное равновесие). Примером ложного равновесия является пламя.

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принципы классификации. При этом систему можно охарактеризовать одним или несколькими признаками:

· по виду научного направления - математические, физические, химические и т. п.;

· по виду формализованного аппарата представления системы - детерминированные и стохастические;

· по степени организованности -хорошо организованные, плохо организованные (диффузные), самоорганизующиеся системы.

· по обусловленности действия различают системы детерминированные и стохастические (вероятностные).

· по происхождению различают системы естественные, созданные в ходе естественной эволюции и в целом не подверженные влиянию человека (клетка), искусственные, созданные под воздействием человека, обусловленные его интересами и целями (машина) и виртуальные (воображаемые и, хотя они в действительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали).

· по основным элементам системы могут быть разделены на абстрактные, все элементы которых являются понятиями (языки, философские системы, системы счисления), и конкретные, в которых присутствуют материальные элементы.

· по взаимодействию со средой различают системы замкнутые и открытые. Большинство изучаемых систем являются открытыми, т.е. они испытывают воздействие среды и реагируют на него и, в свою очередь, оказывают воздействие на среду.

· по степени сложности различают простые, сложные и очень сложные системы.

· по естественному разделению системы делятся на: технические, биологические, социально-экономические.

· по описанию переменных системы : с качественными переменными (имеющие только лишь содержательное описание); с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные).

· по типу описания закона (законов) функционирования системы: типа “Черный ящик” (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы); не параметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона); параметризованные (закон известен с точностью до параметров и его возможно от ADE нести к некоторому классу зависимостей); типа “Белый (прозрачный) ящик” (полностью известен закон).

· По способу управления системой (в системе): управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально); управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов); с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название стохастической. Приведем пример стохастических систем, это – заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими.

Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.

Различают системы линейные и нелинейные . Для линейных систем реакция на сумму двух иди более различных воздействий эквивалентна сумме реакций на каждое возмущение в отдельности, для нелинейных – это не выполняется.

Если параметры систем изменяются во времени, то она называется нестационарной , противоположным понятием является понятие стационарной системы.

Пример нестационарных систем – это системы, где процессы, например, старения являются на данном интервале времени существенными.

Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг, то система называется дискретной . Противоположным понятием является понятие непрерывной системы. Например: ЭВМ, электронные часы, электросчетчик – дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. – непрерывные системы.

Рис. 2.3 Классификация систем по их свойствам.

(Стрелки указывают возможный набор свойств системы)

В последнее время стали различать так называемые "жесткие" и «мягкие» системы, в основном, по используемым критериям рассмотрения.

Исследование «жестких» систем обычно опирается на категории: «проектирование», «оптимизация», «реализация», «функция цели» и другие. Для «мягких» систем используются чаще категории: «возможность», «желательность», «адаптируемость», «здравый смысл», «рациональность» и другие. Методы также различны: для «жестких» систем - методы оптимизации, теория вероятностей и математическая статистика, теория игр и другие; для «мягких» систем - многокритериальная оптимизация и принятие решений (часто в условиях неопределенности), метод Дельфи, теория катастроф, нечеткие множества и нечеткая логика, эвристическое программирование и др.

Для «переноса» знаний широко используются инварианты систем и изоморфизм систем. Важно при таком переносе не нарушать свойство эмерджентности системы.

Контрольные вопросы

1. Как классифицируются системы?

2. Какая система называется большой? сложной?

3. Чем определяется вычислительная (структурная, динамическая) сложность системы? Приведите примеры таких систем.


Тема 3

«Закономерности систем»

Рассматриваются общесистемные закономерности

Закономерности систем (в более полной формулировке – закономерности функционирования и развития систем) – общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложны систем.

Если закон абсолютен и не допускает никаких исключений, то закономерность менее категорична.

Закономерностью называют часто наблюдаемое, типичное свойство (связь или зависимость), присущее объектам и процессам, которое устанавливается опытом.

Для нас наибольший интерес представляет общесистемная закономерность.

Общесистемные закономерности - это закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем.

Эти закономерности присущи любым системам, будь то экономическая, биологическая, общественная, техническая или другая система.

Такие закономерности Л. фон Берталанфи вначале называл системными параметрами или принципами, а А.Холл – макроскопическими закономерностями.

Одну из первых классификаций закономерностей предложил В. Г. Афанасьев. Он разделил закономерности на 4 группы:

1. Закономерности взаимодействия части и целого: целостность или эмерджентность, аддитивность, прогрессирующая систематизация, прогрессирующая факторизация, интегративность.

2. Закономерности иерархической упорядоченности: коммуникативность, иерархичность.

3. Закономерности осуществимости систем: закон «необходимого разнообразия» У. Эшби, эквифинальность, закономерность потенциальной эффективности Б. С. Флейшмана.

4. Закономерности развития систем: историчность, самоорганизация.

Использование закономерностей построения, функционирования и развития систем помогает уточнить представление об изучаемом или проектируемом объекте, позволяет разрабатывать рекомендации по совершенствованию организационных систем, методик системного анализа.

1.3.2. Классификация систем по степени организованности и ее роль в выборе методов моделирования систем

Впервые разделение систем по степени организованности по аналогии с классификацией Г.Саймона и А.Ньюэлла (хорошо структризованные, плохо структуризованные и неструктуризованные проблемы) было предложено В.В.Налимовым , который выделил класс хорошо организованных и класс плохо организованных или вероятностных систем.

Позднее к этим двум классам был добавлен еще класс самоорганизующихся, сложных, систем, который включает рассматриваемые иногда в литературе раздельно классы саморегулирующихся, самообучающихся, самонастраивающихся и т.п. систем.

Выделенные классы практически можно рассматривать как подходы к моделированию объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем.

Ниже приведена краткая характеристика этих классов.

1. Хорошо организованные (детерминированные) системы – системы, для которых исследователю удается определить все элементы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

Для отображения сложного объекта в виде детерминированной системы приходится выделять существенные и не учитывать относительно несущественные для конкретной цели рассмотрения компоненты.

Представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т. е. экспериментально доказана адекватность модели реальному объекту или процессу.

2. Плохо организованные (вероятностные) системы. Такие системы характеризуются вероятностными (стохастическими) параметрами, определенными статистическими методами на достаточно представительной выборке факторов, представляющих исследуемый объект или процесс.

Моделирование объектов в виде вероятностных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например, ремонтных цехах предприятия и в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания), при исследовании документальных потоков информации и т.д.

3. Саморганизующиеся (развивающиеся или сложные) системы характеризуются рядом признаков, особенностей, приближающих их к реальным развивающимся объектам.

Эти особенности, как правило, обусловлены наличием в системе активных элементов (человека), являющихся с одной стороны источником развития и адаптивности системы во внешней среде, но с другой стороны – источником неопределенности и непредсказуемости поведения, затрудняяющих управление. Сложные системы отличаются нестационарностью параметров и стохастичностью поведения.

Перечисленные особенности объясняются с помощью закономерностей систем, основные группы которых перечислены выше.

Анализ деятельности предприятий показывает, что если не создавать условия для развития предприятия такие, как способность адаптироваться, вырабатывать варианты поведения, формулировать цели, изменять структуру и т.п., то предприятие не выживет в условиях нестабильной среды. А реализацию этих свойств можно обеспечить, изучая и используя закономерности функционирования и развития самоорганизующихся систем.

По мере накопления опыта исследования и преобразования систем, обладающих подобными свойствами, была осознана их основная особенность – принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем . Эта особенность, т. е. необходимость сочетания формальных методов и методов качественного анализа, и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Адекватность модели доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей. Иными словами, такое моделирование становится как бы своеобразным «механизмом» развития системы.

Практическая реализация такого «механизма» связана с необходимостью разработки языка моделирования процесса принятия решения. В основу такого языка может быть положен один из методов моделирования систем: например, теоретико-множественные представления, математическая логика, математическая лингвистика , имитационное динамическое моделирование, информационный подход, и т. д. По мере развития модели методы могут меняться.

Представление объекта в виде самоорганизующейся системы применяется для решения наиболее сложных проблем, присущих децентрализованным системам с большой начальной неопределенностью и непредсказуемостью поведения агентов экономических отношений. При этом системный «механизм» развития (самоорганизации) может быть реализован в форме соответствующего подхода (см. Постепенная формализация модели принятия решения. Графосемиотическое моделирование или методики системного анализа ) с использованием различных методов для реализации ее этапов .

Кратко охарактеризованные классы систем удобно использовать как подходы на начальном этапе моделирования любой задачи. Этим классам поставлены в соответствие методы формализованного представления систем , Определив класс системы, можно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить.

Если предварительный анализ проблемной ситуации показывает, что она может быть представлена в виде детерминированных систем, то можно выбирать методы моделирования из классов аналитических и графических методов. Если специалисты по теории систем и системному анализу рекомендуют представить ситуацию в виде плохо организованных или вероятностных систем, то следует обратиться прежде всего к статистическому моделированию .

При представлении ситуации классом самоорганизующихся систем следует применять методы дискретной математики, нечеткой логики и когнитивного моделирования, в частности, теоретико-множественные представления, математическую логику , математическую лингвистику.

Предыдущая

Разделение систем по степени организованности предложено в продолжение идеи о разделении систем на хорошо организованные и плохо организованные, или диффузные . К этим двум классам был добавлен еще класс развивающихся, или самоорганизующихся, систем. Эти классы кратко охарактеризованы в табл. 3.4.

В рассматриваемой классификации использованы существовавшие к тому времени термины, но они объединены в единую классификацию, в которой выделенные классы рассматриваются как подходы к отображению объекта или решаемой задачи и предлагается их характеристика, позволяющая выбирать класс систем для отображения объекта в зависимости от стадии его познания и возможности получения информации о нем.

Таблица 3.4

Классификация систем по Ф. Е. Темникову – В. Н. Волковой

Класс систем

Краткая характеристика

Возможности применения

Хорошо организованная система

Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

Этот класс представлен большинством моделей физических процессов и технических систем.

При представлении объекта этим классом систем задачи выбора целей и определения средств их достижения (элементов, связей) не разделяются. Проблемная ситуация может быть описана в виде выражений, связывающих цель со средствами (т.е. в виде критерия функционирования, критерия или показателя эффективности, целевой функции и т.п.), которые могут быть представлены уравнением, формулой, системой уравнений

Применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т.е. экспериментально доказана адекватность модели реальному объекту или процессу.

Попытки применить этот класс систем для представления сложных многокомпонентных объектов или многокритериальных задач, которые приходится решать при разработке технических комплексов, совершенствовании управления предприятиями и организациями и т.д., практически безрезультатны, так как это требует недопустимо больших затрат времени на формирование модели, и, кроме того, как правило, не удается поставить эксперимент, доказывающий адекватность модели

Плохо организованная, или диффузная , система

При представлении объекта в виде плохо организованной, или диффузной, системы, не ставится задача определить все компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования определенной с помощью некоторых правил достаточно представительной выборки компонентов, отображающих исследуемый объект или процесс.

На основе такого выборочного исследования получают характеристики, или закономерности (статистические, экономические и т.п.) и распространяют эти закономерности на поведение системы в целом с какой-то вероятностью (статистической или в широком смысле использования этого термина)

Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтых цехах предприятия, в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания) и т.д.

При применении этого класса систем основной проблемой становится доказательство адекватности модели.

В случае статистических закономерностей адекватность определяется репрезентативностью выборки. Для экономических закономерностей способы доказательства адекватности нс исследованы

Самоорганизующиеся , или развивающиеся, системы

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, приближающих их к реальным развивающимся объектам (см. подробнее параграф 1.3).

При исследовании этих особенностей выявлено важное отличие развивающихся систем с активными элементами от закрытых – принципиальная ограниченность их формализованного описания.

Эта особенность приводит к необходимости сочетания формальных методов и методов качественного анализа.

Поэтому основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом.

Разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем, путем преобразования полученного отображения с помощью выбранных или принятых подходов и методов (структуризации или декомпозиции", композиции, поиска мер близости на пространстве состояний и т.п.), получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения.

Таким образом можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонентов), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно формируя все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта)

Отображение этим классом систем позволяет исследовать наименее изученные объекты и процессы с большой неопределенностью на начальном этапе постановки задачи. Примерами таких задач являются задачи, возникающие при проектировании сложных технических комплексов, при исследовании и разработке систем управления организациями.

Большинство из моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это особо оговаривается.

При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Адекватность модели доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

При представлении объекта классом самоорганизующихся систем задачи определения целей и выбора средств, как правило, разделяются. При этом задачи определения целей, выбора средств, в свою очередь, могут быть описаны в виде самоорганизующихся систем, т.е. разработку структуры основных направлений развития организации, структуры функционатытой части АСУ, структуры обеспечивающей части АСУ, организационной структуры предприятия и т.д. следует также рассматривать как развивающиеся системы

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом специфических признаков, особенностей (табл. 3.5). В таблице вначале приведены особенности, которые приближают их к реальным развивающимся объектам, а три последние особенности – плата за эти, важные для развития систем.

Таблица 3.5

Особенности развивающихся систем с активными элементами

Особенность

Краткая характеристика

Способность адаптироваться к изменяющимся условиям среды и помехам

Это свойство, казалось бы, является весьма полезным. Однако адаптивность может проявляться не только по отношению к помехам, но и по отношению к управляющим воздействиям, что весьма затрудняет управление системой

Принципиальная неравновесность

При исследовании отличий живых, развивающихся объектов от неживых биолог Эрвин Бауэр высказал гипотезу о том, что живое принципиально находится в неустойчивом, неравновесном состоянии, и более того – использует свою энергию для поддержания себя в неравновесном состоянии (которое и является собственно жизнью). Эта гипотеза находит все большее подтверждение в современных исследованиях. При этом возникают проблемы сохранения устойчивости системы

Способность противостоять энтропийным (разрушающим систему) тенденциям и проявлять негэнтропийные тенденции

Обусловлена наличием активных элементов, стимулирующих обмен материальными, энергетическими и информационными продуктами со средой и проявляющих собственные "инициативы", активное начало. Благодаря этому в таких системах нарушается закономерность возрастания энтропии (аналогичная второму закону термодинамики, действующему в закрытых системах, так называемому "второму началу") и даже наблюдаются негэнтропийные тенденции, т.е. собственно самоорганизация, развитие, в том числе "свобода воли"

Способность вырабатывать варианты поведения и изменять свою структуру

Это свойство может обеспечиваться с помощью различных методов, позволяющих формировать разнообразные модели вариантов принятия решений, выходить на новый уровень эквифинальности , сохраняя при этом целостность и основные свойства

Способность и стремление к целеобразованию

В отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами цели формируются внутри системы (впервые эта особенность применительно к экономическим системам была сформулирована Ю. И. Черняком , целеобразование – основа негэнтропийных процессов в социально-экономических системах

Неоднозначность использования понятий

Например, "цель" – "средство", "система" – "подсистема" и т.п. Эта особенность проявляется при формировании структур целей, при разработке проектов сложных технических комплексов, автоматизированных систем управления и т.п., когда лица, формирующие структуру системы, назвав какую-то ее часть подсистемой, через некоторое время начинают говорить о ней, как о системе, не добавляя приставки "под", или подцели начинают называть средствами достижения вышестоящих целей. Из-за этого часто возникают затяжные дискуссии, которые легко разрешаются с помощью закономерности коммуникативности, свойства "двуликого Януса" (см. параграф 1.5)

Нестационарностъ (изменчивость, нестабильность) параметров и стохастичность поведения

Эта особенность легко интерпретируется для любых систем с активными элементами (живых организмов, социальных организаций и т.п.), обусловливая стохастичность их поведения

Уникальность и непредсказуемость поведения системы в конкретных условиях

Эти свойства проявляются у системы, благодаря наличию в ней активных элементов, в результате чего у системы как бы проявляется "свобода воли", но в то же время имеет место и наличие предельных возможностей, определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями

Перечисленные особенности имеют разнообразные проявления, которые иногда можно выделять как самостоятельные особенности. Эти особенности, как правило, обусловлены наличием в системе активных элементов и носят двойственный характер: они являются новыми свойствами, полезными для существования системы, приспосабливаемости ее к изменяющимся условиям среды, но в то же время вызывают неопределенность, затрудняют управление системой.

Часть из рассмотренных особенностей характерна для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), но большинство из особенностей являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

В то же время при создании и организации управления предприятиями часто стремятся отобразить их используя теорию автоматического регулирования и управления, которая разрабатывалась для закрытых технических систем и существенно искажающую понимание систем с активными элементами, что способно нанести вред предприятию, сделать его неживым "механизмом", не способным адаптироваться к среде и разрабатывать варианты своего развития.

Такая ситуация стала, в частности, наблюдаться в нашей стране в 1960– 1970-е гг., когда слишком жесткие директивы стали сдерживать развитие промышленности.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными, и отрицательными, желательными, и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить, выбрать и создать требуемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элементами занимаются философы, психологи, специалисты по теории систем, которые для объяснения этих особенностей предлагают и исследуют закономерности систем. Основные изученные к настоящему времени закономерности построения, функционирования и развития систем, объясняющие эти особенности, будут рассмотрены в следующем параграфе.

Проявление противоречивых особенностей развивающихся систем и объясняющих их закономерностей в реальных объектах необходимо изучать, постоянно контролировать, отражать в моделях и искать методы и средства, позволяющие регулировать степень их проявления.

При этом следует иметь в виду важное отличие развивающихся систем с активными элементами от закрытых. Пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью.

По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось и была осознана их основная особенность – принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

Эта особенность, т.е. необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом.

Разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем, путем преобразования полученного отображения с помощью установленных (принятых) правил (правил структуризации, или декомпозиции, правил композиции, поиска мер близости на пространстве состояний), получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения.

Таким образом, можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонент), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

Иными словами, такое моделирование становится как бы своеобразным "механизмом" развития системы. Практическая реализация такого "механизма" связана с необходимостью разработки языка моделирования процесса принятия решения. В основу такого языка (знаковой системы) может быть положен один из методов моделирования систем (например, теоретико-множественные представления, математическая логика, математическая лингвистика, имитационное динамическое моделирование, информационный подход и т.д.), но по мере развития модели методы могут меняться.

Проблемным ситуациям с большой начальной неопределенностью в большей мере соответствует представление объекта третьим классом систем. В этом случае моделирование становится как бы своеобразным "механизмом" развития системы. Практическая реализация такого "механизма" связана с необходимостью разработки языка моделирования процесса принятия решения.

В основу такого языка (знаковой системы) может быть положен один из методов моделирования систем (например, теоретико-множественные представления, математическая логика, математическая лингвистика, имитационное динамическое моделирование и т.д.). При моделировании наиболее сложных процессов (например, процессов целеобразования, совершенствования организационных структур и т.п.) "механизм" развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа. На рассмотренной идее моделирования при отображении объекта классом самоорганизующихся систем основан предлагаемый в гл. 4 метод постепенной формализации модели принятия решений.

При моделировании наиболее сложных процессов (например, процессов целеобразования, совершенствования организационных структур и т.п.) "механизм" развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа (примеры рассматриваются в учебнике и справочниках ).

Рассматриваемый класс систем можно разбить на подклассы, выделив адаптивные, или самоприспосабливающиеся, системы, самообучающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и тому подобные классы, в которых в различной степени реализуются рассмотренные выше и еще не изученные (например, для самовоспроизводящихся систем) особенности.

При представлении объекта классом самоорганизующихся систем задачи определения целей и выбора средств, как правило, разделяются. При этом задачи определения целей, выбора средств, в свою очередь, могут быть описаны в виде самоорганизующихся систем, т.е. структура основных направлений плана, структура функциональной части АСУ должныразвиваться так же (и даже здесь нужно чаще включать "механизм" развития), как и структура обеспечивающей части АСУ, организационная структура предприятия и т.д.

Большинство из рассматриваемых в последующих главах примеров методов, моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это будет особо оговариваться.

Рассмотренные классы систем удобно использовать как подходы на начальном этапе моделирования любой задачи. Этим классам могут быть поставлены в соответствие методы формализованного представления систем и таким образом, определив класс системы, можно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить.

  • Волкова В. Н. Подход к выбору метода формализованного представления систем / В. II. Волкова, Ф. Е. Темников // Моделирование сложных систем. М.: МДНТП, 1978. С. 38-40.
  • Налимов В. В. Влияние идей кибернетики и математической статистики на методологию научных исследований // Методологические проблемы кибернетики: материалы к Всесоюзной конференции. Т. 1. М.: 1970. С. 50-71.

Разделение систем по степени организованности предложено в продолжение идеи об их разделении на хорошо организованные и плохо организованные , или диффузные . К этим двум классам был добавлен еще класс развивающихся (самоорганизующихся) систем. Эти классы кратко охарактеризованы в табл. 1.4.

Таблица 1.4

Класс системы Краткая характеристика Возможности применения
1. Хорошо организованная Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все ее элементы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей. В этот класс систем включается большинство моделей физических процессов и технических систем.
При представлении объекта этим классом систем задачи выбора целей и определения средств их достижения (элементов, связей) не разделяются
Этот класс систем используется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т.е. экспериментально доказана адекватность модели реальному объекту или процессу
2. Плохо организованная (диффузная) При представлении объекта в виде плохо организованной (диффузной) системы не ставится задача определить все компоненты и их связи с целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования определенной с помощью некоторых правил достаточно представительной выборки компонентов, отображающих исследуемый объект или процесс.
Нa основе такого, выборочного , исследования получают характеристики или закономерности (статистические, экономические и т.п.), и распространяют эти закономерности на поведение системы в целом с какой-то вероятностью (статистической или в широком смысле использования этого термина)
Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных цехах предприятия, в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания) и т.д. При применении этого класса систем основной проблемой становится доказательство адекватности модели
3. Самоорганизующаяся (развивающаяся) Класс самоорганизующихся (развивающихся) , систем характеризуется рядом признаков, особенностей, приближающих их к реальным развивающимся объектам (см. подробнее в табл. 1.5).
При исследовании этих особенностей выявлено важное отличие развивающихся систем с активными элементами от закрытых — принципиальная ограниченность их формализованнoго описания .
Эта особенность приводит к необходимости сочетания формальных методов и методов качественного анализа. Поэтому основную идею отображения проектируемого объекта классом самоорганизующихся систем можно сформулировать следующим образом. Разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компоненты и связи, а затем путем преобразования полученного отображения с помощью выбранных или принятых подходов и методов (структуризации, декомпозиции; композиции , поиска мер близости на пространстве состояний и т.п.) получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения. Таким образом, можно накапливать информацию об объекте, фиксируя при этом все новые компоненты и связи (правила взаимодействия компонентов), и, применяя их, получать отображения последовательных состояний развивающейся системы, постепенно формируя все более адекватную модель реального, изучаемого или создаваемого объекта
Отображение изучаемого объекта как системы этого класса позволяет исследовать наименее изученные объекты и процессы с большой неопределенностью на начальном этапе постановки задачи. Примерами таких задач являются задачи, возникающие при проектировании сложных технических комплексов, исследовании и разработке систем управления организациями.
Большинство из моделей и методик системного анализа основано на представлении объектов в виде самоорганизующихся систем, хотя не всегда это особо оговаривается. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей

В предложенной классификации систем использованы существовавшие к середине 70-х гг, ХХ в. термины, но они объединены в единую классификацию, в которой выделенные классы рассматриваются как подходы к отображению объекта или решению задачи и предлагается их характеристика, позволяющая выбирать класс систем для отображения объекта в зависимости от стадии его познания и возможности получения информации о нем.

Проблемным ситуациям с большой начальной неопределенностью в большей мере соответствует представление объекта в виде системы третьего класса. В этом случае моделирование становится как бы своеобразным «механизмом» развития системы. Практическая реализация такого «механизма» связана с необходимостью разработки порядка построения модели процесса принятия решения. Построение модели начинается с применения знаковой системы (языка моделирования), в основе которой лежит один из методов дискретной математики (например, теоретико-множественные представления, математическая логика, математическая лингвистика) или специальных методов системного анализа (например, имитационное динамическое моделирование и т.д.). При моделировании наиболее сложных процессов (например, процессов формирования структур целей, совершенствования организационных структур и т.п.) «механизм» развития (самоорганизации) может быть реализован в форме соответствующей методики системного анализа. На рассмотренной идее отображения объекта в процессе представления его классом самоорганизующихся систем базируется и метод постепенной формализации модели принятия решений, характеризуемый в гл. 4.

Класс самоорганизующихся (развивающихся) , систем характеризуется рядом признаков или особенностей, приближающих их к реальным развивающимся объектам (табл. 1.5).

Таблица 1.5

Особенность Краткая характеристика
Нестационарность (изменчивость, нестабильность) параметров и стохастичность поведения Эта особенность легко интерпретируется для любых систем с активными элементами (живых организмов, социальных организаций и т.п.), обусловливая стохастичность их поведения
Уникальность и непредсказуемость поведения системы в конкретных условиях Эти свойства проявляются у системы, благодаря наличию в ней активных элементов, в результате чего у системы как бы проявляется «свобода воли», но в то же время но в то же время имеет место и наличие предельных возможностей , определяемых имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями
Способность адаптироваться к изменяющимся условиям среды и помехам Это свойство, казалось бы, является весьма полезным. Однако адаптивность может проявляться не только по отношению к помехам, но и по отношению к управляющим воздействиям, что весьма затрудняет управление системой
Принципиальная неравновесность При исследовании отличий живых, развивающихся объектов от неживых биолог Эрвин Бауэр высказал гипотезу о том, что живое принципиально находится в неустойчивом, неравновесном состоянии и, более того, использует свою энергию для поддержания себя в неравновесном состоянии (которое и является собственно жизнью). Эта гипотеза находит все большее подтверждение в современных исследованиях. При этом возникают проблемы сохранения устойчивости системы
Способность противостоять энтропийным (разрушающим систему) тенденциям и проявлять негэнтропийные тенденции Она обусловлена наличием активных элементов, стимулирующих обмен материальными, энергетическими и информационными продуктами со средой и проявляющих собственные «инициативы», активное начало. Благодаря этому в таких системах нарушается закономерность возрастания энтропии (аналогичная второму закону термодинамики, действующему в закрытых системах, так называемому «второму началу»), и даже наблюдаются негэнтропийные тенденции, т.е. собственно самоорганизация , развитие, в том числе «свобода воли»
Способность вырабатывать варианты поведения и изменять свою структуру Это свойство может обеспечиваться с помощью различных методов, позволяющих формировать разнообразные модели вариантов принятия решений, выходить на новый уровень эквифинальности , сохраняя при этом целостность и основные свойства
Способность и стремление к целеобразованию В отличие от закрытых (технических) систем, которым цели задаются извне, в системах с активными элементами цели формируются внутри системы (впервые эта особенность применительно к экономическим системам была сформулирована Ю. И. Черняком); целеобразование - основа негэнтропийных процессов в социально-экономических системах
Неоднозначность использования понятий Например, «цель - средство», «система - подсистема» и т.п. Эта особенность проявляется при формировании структур целей, разработке проектов сложных технических комплексов, автоматизированных систем управления и т.п., когда лица, формирующие структуру системы, назвав какую-то ее часть подсистемой, через некоторое время начинают говорить о ней, как о системе, не добавляя приставки «под», или подцели начинают называть средствами достижения вышестоящих целей. Из-за этого часто возникают затяжные дискуссии, которые легко разрешаются с помощью закономерности коммуникативности, свойства «двуликого Януса»

Перечисленные признаки самоорганизующихся (развивающихся) систем имеют разнообразные проявления, которые иногда можно выделять как самостоятельные особенности. Эти особенности, как правило, обусловлены наличием в системе активных элементов и носят двойственный характер: они являются новыми свойствами, полезными для существования системы, ее приспособлению к изменяющимся условиям среды, но в то же время вызывают неопределенность, затрудняют управление системой.

Часть из рассмотренных особенностей характерна для диффузных систем (стохастичность поведения, нестабильность отдельных параметров ), но большинство из них являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

В то же время при создании и организации управления предприятиями часто стремятся представить их, используя теорию автоматического регулирования и управления, разрабатывавшуюся для закрытых, технических систем и существенно искажающую понимание систем с активными элементами, что может нанести вред предприятию, сделать его неживым «механизмом», неспособным адаптироваться к среде и разрабатывать варианты своего развития.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Признаки систем не сразу можно понять и объяснить, выбрать и создать требуемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элементами занимаются философы, психологи, специалисты по теории систем, которые для объяснения этих особенностей предлагают и исследуют закономерности систем .

Проявление противоречивых особенностей развивающихся систем и объяснение их закономерностей на примере реальных объектов необходимо изучать, постоянно контролировать, отражать в моделях и искать методы и средства, позволяющие регулировать степень их проявления.

При этом нужно иметь в виду важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня сложности систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью .

По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся (самоорганизующихся) систем .

Эта особенность, т.е. необходимость сочетания формальных методов и методов качественного анализа, и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Характер

27.09.2016

Снежана Иванова

Организованность как умение не приходит в один день, его нужно нарабатывать годами. Иногда ценой тяжелых волевых усилий человеку удается сделать свою жизнь более организованной.

Известно, что организованный человек за день успевает сделать намного больше дел, нежели тот, кто привык тратить время впустую. Наличие ограничений, строгий распорядок дня, сложная задача, нетерпеливый начальник – все это дисциплинирует и заставляет личность предпринимать активные шаги. Но с другой стороны уровень организованности зависит и от индивидуальных качеств человека, таких как ответственность, настойчивость, целеустремленность, вера в себя и свои возможности. В чем проявляется организованность ? Попробуем разобраться!

Проявления организованности

По каким признакам можно понять, что человек умеет правильно себя организовать? Ниже приведены критерии, на которые стоит обратить внимание.

Самодисциплина

Если личность умеет четко организовать себя, видит перед собой конечную цель, то ей будет гораздо проще достичь желаемого. Организованность как умение не приходит в один день, его нужно нарабатывать годами. Иногда ценой тяжелых волевых усилий человеку удается сделать свою жизнь более организованной.

Обеспечивает развитие самоконтроля, при котором мы просто не позволим себе бездельничать, когда должны плодотворно трудиться. Человек, осознающий ответственность перед собой и другими, как правило, самостоятельно устанавливает себе жесткие рамки, чтобы потом их соблюдать. Это гораздо эффективнее, чем постоянно выбиваться из графика и заставлять себя работать. В противном случае ежедневно впустую будет тратиться большое количество энергии, которую можно было бы направить на реализацию имеющихся целей. Организованность напрямую зависит от степени самоконтроля, способности быть требовательным и даже жестким.

Системность

Для достижения наилучшего результата любое дело должно выполняться с определенной периодичностью. Регулярность обеспечивает развитие организованности. Если какое-то дело выполняется время от времени, то наше сознание начинает воспринимать его как нечто необязательное и обременяющее. В результате появляется лень, нежелание снова к нему обращаться. Постоянность же организует, мотивирует личность на новые свершения, помогает взрастить уверенность в себе.

Замечено, что любое дело, выполняемое систематически, дает больший заряд положительной энергией, чем редкие, но весьма продолжительные занятия. Соответственно, и результат при регулярном подходе будет значительно выше, а с ним возрастет и степень внутреннего удовлетворения. Системность организует ничуть не меньше, чем различные мотиваторы успеха.

Последовательность

Человеку, желающему привнести в свою жизнь больше организованности, необходимо задуматься о создании внутреннего распорядка. Говоря иными словами, важно определить такую последовательность действий, которая бы помогала продвижению дела, но не обессиливала настолько, чтобы потерять стимул к действию.

Организованность сама по себе появляется тогда, когда человек готов чем-то пожертвовать ради достижения цели. К примеру, вы решили упорядочить свою жизнь и заниматься по графику. В тот момент, когда вы составляете себе план четких шагов, то уже знаете, сколько времени потребуется на решение той или иной задачи. Последовательность шагов позволяет развиться организованности в большей степени, чем тогда, когда вы наскоками пытаетесь выполнить сразу большой объем работы. Организованность – это всегда результат трудолюбия и терпения.

Преодоление лени

Каждому из нас время от времени хочется позволить себе немного расслабиться. Только одни делают это в строго установленные часы, а другие поддаются первому искушению и не могут выйти из подавляющего состояния годами. Умение преодолевать собственную лень – это большой шаг вперед на пути к организованности. Организованность всегда является результатом труда, а не каким-то сказочным везением. Как преодолевать желание постоянно лениться? Скажем, если человеку хочется смотреть телевизионную передачу, он начинает придумывать себе различные оправдания, лишь бы не браться за дело. Известно, что это очень непросто, ведь приходится бороться с собственным организмом, воспитывая себя как личность.

Преодоление лени начинается с момента, когда приходит осознание, что необходимо что-то сделать. Есть люди, которым организовать себя помогает лишь стоящий за спиной начальник. Только тогда они начинают активно действовать, а до тех пор совершенно не хотят сдвинуться с мертвой точки. Работа над собственным характером занимает важное место в . Если мы позволим себе отдыхать тогда, когда нам вздумается, то очень скоро не сможем управлять собственной жизнью, а станем просто плыть по течению.

Уровень организованности

От чего зависит уровень организованности конкретного человека и каким он бывает? Понятие довольно сложное, отражающее субъективную степень того, сколько человек успевает сделать за определенный промежуток времени. Уровень организованности может выступать показателем трудовой эффективности.

  • Высокий показатель характеризуется большой требовательностью личности к себе и нацеленностью на результат. Такой человек осознает, какова его конечная цель и что нужно делать для ее достижения. Организованность, находящаяся на высоком уровне, является наработанным навыком, который приходится систематически поддерживать. Успешные люди знают, что как только отступают от правил и отказываются от данных обещаний, автоматически уходят от организованности. Человек может быть успешен только тогда, когда держит себя в рамках.
  • Средний показатель характеризуется наличием постоянных метаний между высокой активностью и значительным спадом. Человек испытывает состояние внутренней борьбы и дополнительный стресс оттого, что не может распределить время и много сил уходит впустую.
  • Низкий показатель характеризуется нежеланием действовать вообще. Может быть, такой человек иногда и хочет что-то изменить в своей жизни, но у него слишком мало внутренних резервов для достижения желаемого.

Таким образом, организованность является внутренней характеристикой личности. Каждый имеет свои ресурсы, но не у всех получается реализовать в жизни задуманное.

© shcool3murom.ru, 2024
35-я параллель - Образовательный портал