Независимые случайные события. Теорема умножения вероятностей. Системы случайных величин Зависимость и независимость двух случайных величин

22.05.2022

Условные законы распределения. Регрессия.

Определение. Условным законом распределения одной из одномерных составляющих двумерной случайной величины (X, Y) называется ее закон распределения, вычисленный при условии, что другая составляющая приняла определенное значение (или попала в какой-то интервал). В предыдущей лекции было рассмотрено нахождение условных распределений для дискретных случайных величин. Там же приведены формулы условных вероятностей:

В случае непрерывных случайных величин необходимо определить плотности вероятности условных распределений j у (х) и j Х (y). С этой целью в приведенных формулах заменим вероятности событий их «элементами вероятности»,!

после сокращения на dx и dy получим:

т.е. условная плотность вероятности одной из одномерных составляющих двумерной случайной величины равна отношению ее совместной плотности к плотности вероятности другой составляющей. Эти соотношения записанные в виде

называются теоремой (правилом) умножения плотностей распределений.

Условные плотности j у (х) и j Х (y). обладают всеми свойствами «безусловной» плотности.

При изучении двумерных случайных величин рассматриваются числовые характеристики одномерных составляющих X и Y - математические ожидания и дисперсии. Для непрерывной случайной величины (X, Y) они определяются по формулам:

Наряду с ними рассматриваются также числовые характеристики условных распределений: условные математические ожидания M х (Y) и М у (Х) и условные дисперсии D х (Y) и D Y (X). Эти характеристики находятся по обычным формулам математически ожидания и дисперсии, в которых вместо вероятностей событий или плотностей вероятности используются условные вероятности или условные плотности вероятности.

Условное математическое ожидание случайной величины Y при X = х, т.е. M x (Y), есть функция от х, называемая функцией регрессии или просто регрессией Y по Х. Аналогично М Y (Х) называется функцией регрессии или просто регрессией X по Y. Графики этих функций называются соответственно линиями регрессии (или кривыми регрессии) Y по X или X по У.

Зависимые и независимые случайные величины.

Определение. Случайные величины X и Y называются независимыми, если их совместная функция распределения F(x,y) представляется в виде произведения функций распределений F 1 (x) и F 2 (y) этих случайных величин, т.е.

В противном случае, случайные величины Х и Y называются зависимыми.

Дифференцируя дважды равенство по аргументам х и у, получим

т.е. для независимых непрерывных случайных величин X и Y их совместная плотность j(х,у) равна произведению плотностей вероятности j 1 (х) и j 2 (у) этих случайных величин.

До сих пор мы сталкивались с понятием функциональной зависимости между переменными X и Y, когда каждому значению х одной переменной соответствовало строго определенное значение у другой. Например, зависимость между двумя случайными величинами - числом вышедших из строя единиц оборудования за определенный период времени и их стоимостью - функциональная.

В общем случае, сталкиваются с зависимостью другого типа, менее жесткой, чем функциональная.

Определение. Зависимость между двумя случайными величинами называется вероятностной (стохастической или статистической), если каждому значению одной из них соответствует определенное (условное) распределение другой.

В случае вероятностной (стохастической) зависимости нельзя, зная значение одной из них, точно определить значение другой, а можно указать лишь распределение другой величины. Например, зависимости между числом отказов оборудования и затрат на его профилактический ремонт, весом и ростом человека, затратами времени школьника на просмотр телевизионных передач и чтение книг и т.п. являются вероятностными (стохастическими).

На рис. 5.10 приведены примеры зависимых и независимых случайных величин X и Y.

Две случайные величины $X$ и $Y$ называются независимыми, если закон распределения одной случайной величины не изменяется от того, какие возможные значения приняла другая случайная величина. То есть, для любых $x$ и $y$ события $X=x$ и $Y=y$ являются независимыми. Поскольку события $X=x$ и $Y=y$ независимые, то по теореме произведения вероятностей независимых событий $P\left(\left(X=x\right)\left(Y=y\right)\right)=P\left(X=x\right)P\left(Y=y\right)$.

Пример 1 . Пусть случайная величина $X$ выражает денежный выигрыш по билетам одной лотереи «Русское лото», а случайная величина $Y$ выражает денежный выигрыш по билетам другой лотереи «Золотой ключ». Очевидно, что случайные величины $X,\ Y$ будут независимыми, так как выигрыш по билетам одной лотереи не зависит от закона распределения выигрышей по билетам другой лотереи. В том случае, когда случайные величины $X,\ Y$ выражали бы выигрыш по одной и той же лотереи, то, очевидно, данные случайные величины были бы зависимыми.

Пример 2 . Двое рабочих трудятся в разных цехах и изготавливают различные изделия, несвязанные между собой технологиями изготовления и используемым сырьем. Закон распределения числа бракованных изделий, изготовленных первым рабочим за смену, имеет следующий вид:

$\begin{array}{|c|c|}
\hline
Число \ бракованных \ изделий \ x & 0 & 1 \\
\hline
Вероятность & 0,8 & 0,2 \\
\hline
\end{array}$

Число бракованных изделий, изготовленных вторым рабочим за смену, подчиняется следующими закону распределения.

$\begin{array}{|c|c|}
\hline
Число \ бракованных \ изделий \ y & 0 & 1 \\
\hline
Вероятность & 0,7 & 0,3 \\
\hline
\end{array}$

Найдем закон распределения числа бракованных изделий, изготовленных двумя рабочими за смену.

Пусть случайная величина $X$ - число бракованных изделий, изготовленных первым рабочим за смену, а $Y$ - число бракованных изделий, изготовленных вторым рабочим за смену. По условию, случайные величины $X,\ Y$ независимы.

Число бракованных изделий, изготовленных двумя рабочими за смену, есть случайная величина $X+Y$. Ее возможные значения равны $0,\ 1$ и $2$. Найдем вероятности, с которыми случайная величина $X+Y$ принимает свои значения.

$P\left(X+Y=0\right)=P\left(X=0,\ Y=0\right)=P\left(X=0\right)P\left(Y=0\right)=0,8\cdot 0,7=0,56.$

$P\left(X+Y=1\right)=P\left(X=0,\ Y=1\ или\ X=1,\ Y=0\right)=P\left(X=0\right)P\left(Y=1\right)+P\left(X=1\right)P\left(Y=0\right)=0,8\cdot 0,3+0,2\cdot 0,7=0,38.$

$P\left(X+Y=2\right)=P\left(X=1,\ Y=1\right)=P\left(X=1\right)P\left(Y=1\right)=0,2\cdot 0,3=0,06.$

Тогда закон распределения числа бракованных изделий, изготовленных двумя рабочими за смену:

$\begin{array}{|c|c|}
\hline
Число \ бракованных \ изделий & 0 & 1 & 2 \\
\hline
Вероятность & 0,56 & 0,38 & 0,06 \\
\hline
\end{array}$

В предыдущем примере мы выполняли операцию над случайными величинами $X,\ Y$, а именно находили их сумму $X+Y$. Дадим теперь более строгое определение операций (сложение, разность, умножение) над случайными величинами и приведем примеры решений.

Определение 1 . Произведением $kX$ случайной величины $X$ на постоянную величину $k$ называется случайная величина, которая принимает значения $kx_i$ с теми же вероятностями $p_i$ $\left(i=1,\ 2,\ \dots ,\ n\right)$.

Определение 2 . Суммой (разностью или произведением) случайных величин $X$ и $Y$ называется случайная величина, которая принимает все возможные значения вида $x_i+y_j$ ($x_i-y_i$ или $x_i\cdot y_i$), где $i=1,\ 2,\dots ,\ n$, с вероятностями $p_{ij}$ того, что случайная величина $X$ примет значение $x_i$, а $Y$ значение $y_j$:

$$p_{ij}=P\left[\left(X=x_i\right)\left(Y=y_j\right)\right].$$

Так как случайные величины $X,\ Y$ независимые, то по теореме умножения вероятностей для независимых событий: $p_{ij}=P\left(X=x_i\right)\cdot P\left(Y=y_j\right)=p_i\cdot p_j$.

Пример 3 . Независимые случайные величины $X,\ Y$ заданы своими законами распределения вероятностей.

$\begin{array}{|c|c|}
\hline
x_i & -8 & 2 & 3 \\
\hline
p_i & 0,4 & 0,1 & 0,5 \\
\hline
\end{array}$

$\begin{array}{|c|c|}
\hline
y_i & 2 & 8 \\
\hline
p_i & 0,3 & 0,7 \\
\hline
\end{array}$

Составим закон распределения случайной величины $Z=2X+Y$. Суммой случайных величин $X$ и $Y$, то есть $X+Y$, называется случайная величина, которая принимает все возможные значения вида $x_i+y_j$, где $i=1,\ 2,\dots ,\ n$, с вероятностями $p_{ij}$ того, что случайная величина $X$ примет значение $x_i$, а $Y$ значение $y_j$: $p_{ij}=P\left[\left(X=x_i\right)\left(Y=y_j\right)\right]$. Так как случайные величины $X,\ Y$ независимые, то по теореме умножения вероятностей для независимых событий: $p_{ij}=P\left(X=x_i\right)\cdot P\left(Y=y_j\right)=p_i\cdot p_j$.

Итак, имеет законы распределения случайных величины $2X$ и $Y$ соответственно.

$\begin{array}{|c|c|}
\hline
x_i & -16 & 4 & 6 \\
\hline
p_i & 0,4 & 0,1 & 0,5 \\
\hline
\end{array}$

$\begin{array}{|c|c|}
\hline
y_i & 2 & 8 \\
\hline
p_i & 0,3 & 0,7 \\
\hline
\end{array}$

Для удобства нахождения всех значений суммы $Z=2X+Y$ и их вероятностей составим вспомогательную таблицу, в каждой клетке которой поместим в левом углу значения суммы $Z=2X+Y$, а в правом углу - вероятности этих значений, полученные в результате перемножения вероятностей соответствующих значений случайных величин $2X$ и $Y$.

В результате получим распределение $Z=2X+Y$:

$\begin{array}{|c|c|}
\hline
z_i & -14 & -8 & 6 & 12 & 10 & 16 \\
\hline
p_i & 0,12 & 0,28 & 0,03 & 0,07 & 0,15 & 0,35 \\
\hline
\end{array}$

Любой из них, не зависит от того, какие значения приняли (или примут) остальные случайные величины.

Например, система двух игральных кубиков – совершенно понятно, что результат броска одного кубика никак не влияет на вероятности выпадения граней другого кубика. Или одинаковые независимо работающие игровые автоматы. И, наверное, у некоторых сложилось впечатление, что независимы вообще любые СВ. Однако это далеко не всегда так.

Рассмотрим одновременное сбрасывание двух кубиков-магнитов, у которых северные полюса находятся на стороне 1-очковой грани и южные – на противоположной грани в 6 очков. Будут ли независимыми аналогичные случайные величины? Да, будут. Просто снизятся вероятности выпадения «1» и «6» и увеличатся шансы других граней, т.к. в результате испытания кубики могут притянуться противоположными полюсами.

Теперь рассмотрим систему , в которой кубики сбрасываются последовательно :

– количество очков, выпавших на первом кубике;

– количество очков, выпавших на втором кубике, при условии, что он всё время сбрасывается по правую (например) сторону от 1-го кубика .

В этом случае закон распределения случайной величины зависит от того, как расположился 1-й кубик. Вторая кость может либо притянуться, либо наоборот – отскочить (если «встретились» одноимённые полюса), либо частично или полностью проигнорировать 1-й кубик.

Второй пример: предположим, что одинаковых игровых автоматов объединены в единую сеть, и – есть система случайных величин - выигрышей на соответствующих автоматах. Не знаю, законна ли эта схема, но владелец игрового зала вполне может настроить сеть следующим образом: при выпадении крупного выигрыша на каком-либо автомате, автоматически меняются законы распределения выигрышей вообще на всех автоматах. В частности, целесообразно на некоторое время обнулить вероятности крупных выигрышей, чтобы заведение не столкнулось с нехваткой средств (в том случае, если вдруг кто-то выиграет по-крупному ещё раз). Таким образом, рассмотренная система будет зависима.

В качестве демонстрационного примера рассмотрим колоду из 8 карт, пусть это будут короли и дамы, и простую игру, в которой два игрока последовательно (не важно, в каком порядке) извлекают из колоды по одной карте. Рассмотрим случайную величину , которая символизирует одного игрока и принимает следующие значения: 1 , если он извлёк червовую карту, и 0 – если карту другой масти.

Аналогично, пусть случайная величина символизирует другого игрока и тоже принимает значения 0 либо 1, если он извлёк не черву и черву соответственно.

– вероятность того, что оба игрока извлекут черву,

– вероятность противоположного события, и:

– вероятность того, что один извлечёт черву, а другой – нет; ну или наоборот:

Таким образом, закон распределения вероятностей зависимой системы :

Контроль: , что и требовалось проверить. …Возможно, у вас возник вопрос, а почему я рассматриваю именно 8, а не 36 карт? Да просто для того, чтобы дроби получились не такими громоздкими.

Теперь немного проанализируем результаты. Если просуммировать вероятности по строкам : , то получится в точности закон распределения случайной величины :

Легко понять, что это распределение соответствует ситуации, когда «иксовый» игрок тянет карту один, без «игрекового» товарища, и его математическое ожидание:
– равно вероятности извлечения червы из нашей колоды.

Аналогично, если просуммировать вероятности по столбцам , то получим закон распределения одиночной игры второго игрока:

с тем же матожиданием

В силу «симметрии» правил игры, распределения получились одинаковыми, но, в общем случае, они, конечно, различны.

Помимо этого, полезно рассмотреть условные законы распределения вероятностей . Это ситуация, когда одна из случайных величин уже приняла какое-то конкретное значение, или же мы предполагаем это гипотетически.

Пусть «игрековый» игрок тянет карту первым и извлёкает не черву . Вероятность этого события составляет (суммируем вероятности по первому столбцу таблицы – см. вверху ). Тогда, из той же теоремы умножения вероятностей зависимых событий получаем следующие условные вероятности:
– вероятность того, что «иксовый» игрок вытянет не черву при условии, что «игрековый» вытянул не черву;
– вероятность того, что «иксовый» игрок вытянет черву, при условии, что «игрековый» вытянул не черву.

…все помнят, как избавляться от четырёхэтажных дробей ? И да, формальное, но очень удобное техническое правило вычисления этих вероятностей : сначала следует просуммировать все вероятности по столбцу , и затем каждую вероятность разделить на полученную сумму.

Таким образом, при условный закон распределения случайной величины запишется так:

, ОК. Вычислим условное математическое ожидание:

Теперь составим закон распределения случайной величины при условии, что случайная величина приняла значение , т.е. «игрековый» игрок извлёк карту червовой масти. Для этого суммируем вероятности 2-го столбца таблицы (см. вверху ): и вычисляем условные вероятности:
– того, что «иксовый» игрок вытянет не черву,
– и черву.
Таким образом, искомый условный закон распределения:

Контроль: , и условное математическое ожидание:
– разумеется, оно получилось меньше, чем в предыдущем случае, так как «игрековый» игрок убавил количество черв в колоде.

«Зеркальным» способом (работая со строками таблицы ) можно составить – закон распределения случайной величины , при условии, что случайная величина приняла значение , и условное распределение , когда «иксовый» игрок извлёк черву. Легко понять, что в силу «симметрии» игры, получатся те же распределения и те же значения .

Для непрерывных случайных величин вводятся такие же понятия условных распределений и матожиданий , но если в них нет горячей надобности, то лучше продолжить изучение этого урока.

На практике в большинстве случаев вам предложат готовый закон распределения системы случайных величин:

Пример 4

Двумерная случайная величина задана своим законом распределения вероятностей:

…хотел рассмотреть таблицу побольше, но решил таки не маньячить, ведь главное разобраться в самом принципе решения.

Требуется:

1) Составить законы распределения и вычислить соответствующие математические ожидания. Сделать обоснованный вывод о зависимости или независимости случайных величин .

Это задание для самостоятельного решения! Напоминаю, что в случае независимости СВ законы должны получиться одинаковыми и совпасть с законом распределения случайной величины , и законы – совпасть с . Десятичные дроби, кто не знает или позабыл, удобно делить так: .
Свериться с образцом можно внизу страницы.

2) Вычислить коэффициент ковариации.

Сначала разберёмся в самом термине, и откуда он вообще произошёл: когда случайная величина принимает различные значения, то говорят, что она варьируется , и количественное измерение этой вариации , как вы знаете, выражается дисперсией . Используя формулу вычисления дисперсии, а также свойства матожидания и дисперсии, нетрудно установить, что:

то есть, при сложении двух случайных величин суммируются их дисперсии и добавляется дополнительное слагаемое, характеризующее совместную вариацию или коротко – ковариацию случайных величин.

Ковариация или корреляционный момент – это мера совместной вариации случайных величин.

Обозначение : или

Ковариация дискретных случайных величин определяется, сейчас буду «выражаться»:), как математическое ожидание произведения линейных отклонений этих случайных величин от соответствующих матожиданий:

Если , то случайные величины зависимы . Образно говоря, ненулевое значение говорит нам о закономерных «откликах» одной СВ на изменение другой СВ.

Ковариацию можно вычислить двумя способами, я рассмотрю оба.

Способ первый . По определению математического ожидания :

«Страшная» формула и совсем не страшные вычисления. Сначала составим законы распределения случайных величин и – для этого суммируем вероятности по строкам («иксовая» величина) и по столбцам («игрековая» величина) :

Взгляните на исходную верхнюю таблицу – всем понятно, как получились распределения? Вычислим матожидания :
и отклонения значений случайных величин от соответствующих математических ожиданий:

Полученные отклонения удобно поместить в двумерную таблицу, внутрь которой затем переписать вероятности из исходной таблицы:


Теперь нужно вычислить все возможные произведения , в качестве примера я выделил: (красный цвет) и (синий цвет) . Вычисления удобно проводить в Экселе, а на чистовике расписать всё подробно. Я привык работать «по строкам» слева направо и поэтому сначала перечислю все возможные произведения с «иксовым» отклонением -1,6, затем – с отклонением 0,4:

Способ второй , более простой и распространённый. По формуле:

Матожидание произведения СВ определяется как и технически всё очень просто: берём исходную таблицу задачи и находим все возможные произведения на соответствующие вероятности ; на рисунке ниже я выделил красным цветом произведение и синим произведение :


Сначала перечислю все произведения со значением , затем – со значением , но вы, разумеется, можете использовать и другой порядок перебора – кому как удобнее:

Значения уже вычислены (см. 1-й способ), и осталось применить формулу:

Как отмечалось выше, ненулевое значение ковариации говорит нам о зависимости случайных величин, причём, чем оно больше по модулю , тем эта зависимость ближе к функциональной линейной зависимости . Ибо определяется через линейные отклонения.

Таким образом, определение можно сформулировать точнее:

Ковариация – это мера линейной зависимости случайных величин.

С нулевым значением всё занятнее. Если установлено, что , то случайные величины могут оказаться как независимыми, так и зависимыми (т.к. зависимость может носить не только линейный характер). Таким образом, этот факт в общем случае нельзя использовать для обоснования независимости СВ !

Однако, если известно, что независимы, то . В этом легко убедиться аналитически: так как для независимых случайных величин справедливо свойство (см. предыдущий урок) , то по формуле вычисления ковариации:

Какие значения может принимать этот коэффициент? Коэффициент ковариации принимает значения, не превосходящие по модулю – и чем больше , тем сильнее выражена линейная зависимость. И всё вроде бы хорошо, но есть существенное неудобство такой меры:

Предположим, мы исследуем двумерную непрерывную случайную величину (готовимся морально:)), компоненты которой измеряются в сантиметрах, и получили значение . Кстати, какая размерность у ковариации? Коль скоро, – сантиметры, и – тоже сантиметры, то их произведение и матожидание этого произведения – выражается в квадратных сантиметрах, т.е. ковариация, как и дисперсия – есть квадратичная величина.

Теперь предположим, что кто-то изучил ту же систему , но использовал не сантиметры, а миллиметры. Так как 1 см = 10 мм, то ковариация увеличится в 100 раз и будет равна !

Поэтому удобно рассмотреть нормированный коэффициент ковариации, который давал бы нам одинаковое и безразмерное значение. Такой коэффициент получил название, продолжаем нашу задачу:

3) Коэффициент корреляции . Или, точнее, коэффициент линейной корреляции:

, где – стандартные отклонения случайных величин.

Коэффициент корреляции безразмерен и принимает значения из промежутка:

(если у вас на практике получилось другое – ищите ошибку) .

Чем больше по модулю к единице, тем теснее линейная взаимосвязь между величинами , и чем ближе к нулю – тем такая зависимость выражена меньше. Взаимосвязь считается существенной, начиная примерно с . Крайним значениям соответствует строгая функциональная зависимость , но на практике, конечно, «идеальных» случаев не встретить.

Очень хочется привести много интересных примеров, но корреляция более актуальна в курсе математической статистики , и поэтому я приберегу их на будущее. Ну а сейчас найдём коэффициент корреляции в нашей задаче. Так. Законы распределения уже известны, скопирую сверху:

Матожидания найдены: , и осталось вычислить стандартные отклонения. Табличкой уж оформлять не буду, быстрее подсчитать строкой:

Ковариация найдена в предыдущем пункте , и осталось рассчитать коэффициент корреляции:
, таким образом, между величинами имеет место линейная зависимость средней тесноты.

Четвёртое задание опять же более характерно для задач математической статистики , но на всякий случай рассмотрим его и здесь:

4) Составить уравнение линейной регрессии на .

Уравнение линейной регрессии – это функция , которая наилучшим образом приближает значения случайной величины . Для наилучшего приближения, как правило, используют метод наименьших квадратов , и тогда коэффициенты регрессии можно вычислить по формулам:
, вот это чудеса, и 2-й коэффициент:

 Зависимые и независимые случайные величины

 При изучении систем случайных величин всегда следует обращать внимание на степень и характер их зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. В некоторых случаях зависимость между случайными величинами может быть настолько тесной, что, зная значение одной случайной величины, можно в точности указать значение другой. В другом крайнем случае зависимость между случайными величинами является настолько слабой и отдаленной, что их можно практически считать независимыми.
 Понятие о независимых случайных величинах - одно из важных понятий теории вероятностей.
 Случайная величина \(Y\) называется независимой от случайной величины \(X\), если закон распределения величины \(Y\) не зависит от того, какое значение приняла величина \(X\).
 Для непрерывных случайных величин условие независимости \(Y\) от \(X\) может быть записано в виде: $$f(y\mid x)=f_{2}(y)$$ при любом \(у\).
 Напротив, в случае, если \(Y\) зависит от \(X\), то $$f(y\mid x) \neq f_{2}(y)$$  Докажем, что зависимость или независимость случайных величин всегда взаимны : если величина \(Y\) не зависит от \(X\), то и величина \(X\) не зависит от \(Y\).
 Действительно, пусть \(Y\) не зависит от \(X\): $$f(y\mid x)=f_{2}(y)$$ имеем: $$f_{1}(x)f(y\mid x)=f_{2}(y)f(x\mid y)$$ откуда, получим: $$f_{1}(x)=f(x\mid y)$$ что и требовалось доказать.
 Так как зависимость и независимость случайных величин всегда взаимны, можно дать новое определение независимых случайных величин.
 Случайные величины \(X\) и \(Y\) называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины \(X\) и \(Y\) называются зависимыми .
 Для независимых непрерывных случайных величин теорема умножения законов распределения принимает вид: $$f(x, y)=f_{1}(x)f_{2}(y)$$ т. е. плотность распределения системы независимых случайных величин равна произведению плотностей распределения отдельных величин, входящих в систему.
Часто по самому виду функции \(f(x, у)\) можно заключить, что случайные величины \(X, Y\) являются независимыми, а именно, если плотность распределения \(f(x, у)\) распадается на произведение двух функций, из которых одна зависит только от \(х\), другая - только от \(у\), то случайные величины независимы.
Пример 1. Плотность распределения системы \((X, Y)\) имеет вид: $$f(x, y)=\frac{1}{\pi ^{2}(x^{2}+y^{2}+x^{2}y^{2}+1)}$$ Определить: зависимы или независимы случайные величины \(X\) и \(Y\).
Решение. Разлагая знаменатель на множители, имеем: $$f(x, y)=\frac{1}{\pi (x^{2}+1)}\frac{1}{\pi (y^{2}+1)}$$ Из того, чти функция \(f(x, y)\) распалась на произведение двух функций из которых одна зависит только от \(х\), а другая - только от \(у\), заключаем, чго величины \(X\) и \(Y\) должны быть независимы. Действительно, применяя формулы, имеем: $$f(x, y)=\frac{1}{\pi (x^{2}+1)}\int_{-\infty}^{\infty}{\frac{dy}{\pi (y^{2}+1)}}=\frac{1}{\pi (x^{2}+1)}$$ аналогично $$f(x, y)={\frac{1}{\pi (y^{2}+1)}}$$ откуда убеждаемся, что $$f(x, y)=f_{1}(x)f_{2}(y)$$ и, следовательно, величины \(X\) и \(Y\) независимы.

При изучении систем случайных величин всегда следует обращать внимание на степень и характер их зависимости. Эта зависимость может быть более или менее ярко выраженной, более или менее тесной. В некоторых случаях зависимость между случайными величинами может быть настолько тесной, что, зная значение одной случайной величины, можно в точности указать значение другой. В другом крайнем случае зависимость между случайными величинами является настолько слабой и отдаленной, что их можно практически считать независимыми.

Понятие о независимых случайных величинах – одно их важных понятий теории вероятностей.

Случайная величина называется независимой от случайной величины , если закон распределения величины не зависит от того, какое значение приняла величина .

Для непрерывных случайных величин условие независимости от может быть записано в виде:

при любом .

Напротив, в случае, если зависит от , то

.

Докажем, что зависимость или независимость случайных величин всегда взаимны: если величина не зависит от .

Действительно, пусть не зависит от :

. (8.5.1)

Из формул (8.4.4) и (8.4.5) имеем:

откуда, принимая во внимание (8.5.1), получим:

что и требовалось доказать.

Так как зависимость и независимость случайных величин всегда взаимны, можно дать новое определение независимых случайных величин.

Случайные величины и называются независимыми, если закон распределения каждой из них не зависит от того, какое значение приняла другая. В противном случае величины и называются зависимыми.

Для независимых непрерывных случайных величин теорема умножения законов распределения принимает вид:

, (8.5.2)

т. е. плотность распределения системы независимых случайных величин равна произведению плотностей распределения отдельных величин, входящих в систему.

Условие (8.5.2) может рассматриваться как необходимое и достаточное условие независимости случайных величин.

Часто по самому виду функции можно заключить, что случайные величины , являются независимыми, а именно, если плотность распределения распадается на произведение двух функций, из которых одна зависит только от , другая - только от , то случайные величины независимы.

Пример. Плотность распределения системы имеет вид:

.

Определить, зависимы или независимы случайные величины и .

Решение. Разлагая знаменатель на множители, имеем:

.

Из того, что функция распалась на произведение двух функций, из которых одна зависима только от , а другая - только от , заключаем, что величины и должны быть независимы. Действительно, применяя формулы (8.4.2) и (8.4.3), имеем:

;

аналогично

,

откуда убеждаемся, что

и, следовательно, величины и независимы.

Вышеизложенный критерий суждения о зависимости или независимости случайных величин исходит из предположения, что закон распределения системы нам известен. На практике чаще бывает наоборот: закон распределения системы не известен; известны только законы распределения отдельных величин, входящих в систему, и имеются основания считать, что величины и независимы. Тогда можно написать плотность распределения системы как произведение плотностей распределения отдельных величин, входящих в систему.

Остановимся несколько подробнее на важных понятиях о «зависимости» и «независимости» случайных величин.

Понятие «независимости» случайных величин, которым мы пользуемся в теории вероятностей, несколько отличается от обычного понятия «зависимости» величин, которым мы оперируем в математике. Действительно, обычно под «зависимостью» величин подразумевают только один тип зависимости - полную, жесткую, так называемую - функциональную зависимость. Две величины и называются функционально зависимыми, если, зная значение одной из них, можно точно указать значение другой.

В теории вероятностей мы встречаемся с другим, более общим, типом зависимости - с вероятностной или «стохастической» зависимостью. Если величина связана с величиной вероятностной зависимостью, то, зная значение , нельзя указать точно значение , а можно указать только ее закон распределения, зависящий от того, какое значение приняла величина .

Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Таким образом, функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой. Те физические величины, которые на практике мы считаем функционально зависимыми, в действительности связаны весьма тесной вероятностной зависимостью: при заданном значении одной из этих величин другая колеблется в столь узких пределах, что ее практически можно считать вполне определенной. С другой стороны, те величины, которые мы на практике считаем независимыми, и действительности часто находятся в некоторой взаимной зависимости, но эта зависимость настолько слаба, что ею для практических целей можно пренебречь.

Вероятностная зависимость между случайными величинами очень часто встречается на практике. Если случайные величины и находятся в вероятностной зависимости, это не означает, что с изменением величины величина изменяется вполне определенным образом; это лишь означает, что с изменением величины величина имеет тенденцию также изменяться (например, возрастать или убывать при возрастании ). Эта тенденция соблюдается лишь «в среднем», в общих чертах, и в каждом отдельном случае от нее возможны отступлении.

Рассмотрим, например, две такие случайные величины: - рост наугад взятого человека, - его вес. Очевидно, величины и находятся в определенной вероятностной зависимости; она выражается в том, что в общем люди с большим ростом имеют больший вес. Можно даже составить эмпирическую формулу, приближенно заменяющую эту вероятностную зависимость функциональной. Такова, например, общеизвестная формула, приближенно выражающая зависимость между ростом и весом.

© shcool3murom.ru, 2024
35-я параллель - Образовательный портал